
NOTATION 

h x, hy, grid steps; p, density; u, v, velocity components; p, pressure; E, internal 
energy; E = p(E + 0.5(u 2 + v2)), total energy; p, viscosity coefficient; c = ~I,----~7 
speed of sound; Re, Reynolds number; Pr, Prandtl number; y, adiabatic index; Tw, all tem- 
perature; Te, equilibrium wall temperature; M, Mach number; 6, thickness of the boundary 
layer; q, heat flux at the wall. Indices: =, parameters in the undisturbed oncoming 

0 -- 0 -- 

stream; x, x, x, (y, y, y), central, left-hand, and right-hand difference derivatives with 
respect to x (and to y), respectively. 
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DYNAMICS OF A BOUNDED GAS CAVITY IN A PIPE 

V. G. Kinelev and P. M. Shkapov UDC 532.529.5 

The dynamics of a gas cavity formed in a pipe in the zone of flow separation be- 
hind a cavitating body, and bounded by a diaphragm mounted at a pipeline exit, 
is considered. A mathematical model is proposed, on the basis of which the 
stability of the flow under consideration is investigated. 

At present, more emphasis is being placed on the investigation of the dynamics of cavi- 
tation flows in pipes and flow elements of hydraulic systems. Of particular interest are 
flows with a developed connected cavity that is formed in the zones of flow separation be- 
hind the bluff elements of the structure or by special cavitating bodies. In these regions 
of flow with reduced pressure, a diffusive liberation of the dissolved gas or a buildup of 
dispersed gas bubbles that separate from the incoming flow takes place. When a certain 
critical cavitation number is realized, this results in the formation of a single cavity -- 
a connected cavity with a sharply expressed gas-liquid interface. The adjustment of the 
dimensions of the middle sections of a cavitating body and a pipe, the blowing of the gas 
in the region of separation, as well as flow swirl, either natural or applied, affect sub- 
stantially the intensity of these processes. When the cavitation number diminishes, the 
cavity dimensions increase along the flow, and flow lines at its interface tend to become 
parallel to each other and to the pipe walls in the limit [1-3]. 
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Fig. i. Characteristic form of propagation of per- 
turbations along the surface of the bounded gas cav- 
ity in the form of traveling waves for different 
values of vibration frequencies; (a) for f = 13.3 
Hz; (b) for f = 76.6 Hz. 

Fig. 2. Two extreme phases in the develop- 
ment of a tail piece of a cavity at the en- 
trance of the flow in the local hydraulic 
resistance. 

Experimental studies of these flows show that in many cases they are nonstationary. 
One of the external manifestations of a nonstationary nature is a periodic change in the 
axial and radial dimensions of cavity formations with respect to certain mean values. This 
can be both a result of a response of the cavity to external perturbations and a consequence 
of its inherent instability. It is necessary to note that the majority of existing inves- 
tigations are devoted to analyses of dynamics of developed cavities formed in free or semi- 
bounded flows [1-5]. As distinguished from the cases under consideration for internal flows, 
real hydraulic systems are characterized by the presence of limits on the development of 
cavities, which arise due to the presence of turbulators, valves, diaphragms, grids, and 
other local hydraulic resistances located along the flow, in an axial direction. 

The present work is devoted to the development of a mathematical model, describing the 
dynamics of the gas cavity that is formed in a pipe behind a bluff body bounded by a lumped 
hydraulic resistance of diaphragm type mounted at the exit of the pipe. On the basis of the 
proposed mathematical model we have the results of an analysis of visual observations and 
materials of high-speed filming, which have allowed us to exhibit characteristic features 
of the behavior of the cavity under consideration during vibrations. In particular, it has 
been found that the most significant changes in the volume occupied by the gas phase occur 
during fluctuations in the axial direction in the region immediately ahead of the entrance 
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of the flow to the local hydraulic resistance. Radial deformations of the cavity in the 
form of waves traveling along the gas-liquid interface are less important. The character- 
istic pattern of propagation of perturbations on the surface of the cavity in the form of 
traveling waves is represented in Fig. i. The photographs in Fig. 2 illustrate two extreme 
phases in the development of a tail piece of the cavity before the flow enters a local hy- 
draulic resistance. It should be mentioned here that we do not consider regimes under 
which a progressively increasing development of the surface waves due to the instability of 
the gas-liquid interface might result in separation and ablation of the entire tail piece 
of the cavity, as is described, for example, in [I, 3], and also regimes with vortex cavity 
closure according to a mechanism with backwater until the flow enters a local hydraulic re- 
sistance [i, 4]. The diagram of the flow under consideration is shown in Fig. 3. 

In the proposed model, we assumed that the intake of the gas phase in the cavity is 
provided by its forced supply in the zone of flow separation behind the cavitating body, 
via a pipe equipped with a distributed exit in order to avoid "the driving effect" [3]. A 
linearized equation for the variation in the gas mass in the cavity is of the form 

dt 

where 6Mgas = 6(ggVg) is the variation of the gas mass in the cavity.~ 

A relationship between the gas density and pressure in the cavity under the assumption, 
for example, that the process is isothermal is determined from the equation 

6Pg 2 
69g ag, ( 2 ) 

where C~g is the speed of propagation of small perturbations in the gas. 

In order to analyze the basic laws for the flow under consideration, we can represent 
a gas cavity by an equivalent cylinder with area F c and length s the radial perturbations 
of the generatrix of which are described by the expression 

6h = 8ho exp [ik (Vph t - -  x)], (3)  
2 2 where v~H= Vo • ]/Vg + v~ v0 is the speed in the annular layer of the liquid surrounding the 

cavity.- Here and below, the index 0 corresponds both to peak parameters and also to mean 
and constant parameters. 

As distinguished from [6 and 7], where swirling flows were considered for which the 
phase velocity of gravitational waves due to the flow swirl can exceed substantially the 
axial velocity of the liquid layer, by limiting consideration to the low-frequency spectrum 
perturbations, we can assume that Vg r and v o << v 0. This condition represents, in particu- 
lar, a criterion for the absence of waves moving along the region under consideration with 
the gas cavity up the flow, the emergence of which might be caused by the reflection of 
perturbations from the local hydraulic resistance that bounds the cavity. Therefore, the 
phase velocity of small perturbations in (3) is actually determined by the relationship Vph = 
v 0. In correspondence ~ ~!th this, a variation in the flow rate in the layer surrounding 
the cavity can be written in the form 

2 3 
z \  3 i, 1 

[ \ \ \ \ ~ \ x  ~ \ '~ \ \ \ \ \ \ \ \ \ \  \ \ \ l  r 

\ \ \  \ \ \ \ \ \ ', ', "~ \ ]',] 'l \ 

z 131 
Fig .  3. Flow diagram wi th  a bounded gas c a v i t y i  
1) c a v i t a t i n g  body; 2) p ipe  w a l l s ;  3) diaphragm; 
4) gas d e l i v e r y  p i p e l i n e .  
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6G s = 6G0 exp [jk (v0t - -x) ] .  ( 4 )  

A l i n e a r i z e d  e q u a t i o n  t h a t  d e s c r i b e d  a v a r i a t i o n  in  vo lume  o f  t h e  g a s  c a v i t y  in  t h e  
a x i a l  d i r e c t i o n  was a s sumed  t o  be  as  f o l l o w s  [ 4 ] :  

pcd~6Vgdt ~ = 6 P g - -  6P~, (5 )  

where  6Vg = Fc06s  6P 4 i s  t h e  v a r i a t i o n  in  p r e s s u r e  in  t h e  c r o s s - s e c t i o n  4 - 4  ahead  o f  t h e  
e n t r a n c e  o f  t h e  f l o w  in  t h e  l o c a l  h y d r a u l i c  r e s i s t a n c e  ( F i g .  3 ) ;  6Pg = 6 P g ( t )  i s  t h e  
v a r i a t i o n  in  p r e s s u r e  o f  t h e  g a s  in  t h e  c a v i t y ,  which  was assumed  t o  be  t h e  same t h r o u g h o u t  
the entire volume [4, 5]. 

On the basis of Eq. (4), the relationship between the variations in the flow rate in 
cross sections 3-3 and 3'-3' of the pipeline (Fig. 3) is of the form 

6G$, (t) = '  6G~(t - -  ~), ( 6 )  

where �9 = s 0 is the delay time related to the propagation of a drifting perturbation 
wave in the area with laminar motion of phases. 

For the liquid contained in the volume and bounded by the contours of the cavity and 
cross sections 3'-3' and C-~, we can write down 

d6M ~ 663 ~, - -  86: ,  ( 7 ) 
dt 

where  6M~ = -p~6Vg;  6G~, 6G~ a r e  v a r i a t i o n s  in  f l o w  r a t e s  t h r o u g h  t h e  c r o s s  s e c t i o n  3 ' - 3 '  

o f  t h e  p i p e l i n e  and t h e  c o m p r e s s e d  c r o s s  s e c t i o n  C-C o f  t h e  d i s c h a r g i n g  j e t ,  r e s p e c t i v e l y .  

The gas  f rom t h e  c a v i t y  in  t h e  g i v e n  c a s e  i s  c a r r i e d  o u t  in  t h e  p r o c e s s  o f  d i s c h a r g i n g  
o f  a t w o - p h a s e  m i x t u r e  t h r o u g h  t h e  l o c a l  h y d r a u l i c  r e s i s t a n c e  moun ted  a t  t h e  ex i t :  o f  a p i p e -  
l i n e .  By n o t  g o i n g  i n t o  t h e  p a r t i c u l a r s  o f  a c o m p l i c a t e d  h y d r o d y n a m i c  p a t t e r n  o f  t h i s  p h e -  
nomenon ( i t  w i l l  become t h e  s u b j e c t  m a t t e r  o f  an i n d e p e n d e n t  r e s e a r c h ) ,  i n  o r d e r  t o  o b t a i n  
t h e  r e s u l t s  o f  t h e  f i r s t  a p p r o x i m a t i o n ,  we can  u s e ,  f o r  e x a m p l e ,  a mode l  o f  d i s c h a r g e  o f  a 
m i x t u r e  w i t h  c o n d i t i o n a l l y  i n d e p e n d e n t  m o t i o n  o f  p h a s e s  f o r  e q u a l  p r e s s u r e  d i f f e r e n c e s  a l o n g  
e a c h  o f  them.  A c c o r d i n g  t o  t h i s  m o d e l ,  t h e  d i s c h a r g e  o f  g a s  and l i q u i d  in  t h e  c o m p r e s s e d  
c r o s s  s e c t i o n  o f  t h e  d i s c h a r g e  j e t  depends  on t h e  a r e a  o f  t h e  c o m p r e s s e d  c r o s s  s e c t i o n ,  o c -  
c u p i e d  by e a c h  o f  t h e  p h a s e s  [8 ,  9 ] .  I n  t h e  g i v e n  c a s e ,  t h e  f o l l o w i n g  r e l a t i o n  i s  a p p l i c a -  
b l e  for the flow rate of the liquid: 

( 8 )  
8~ c-c = ~F0 (1 -- ~) V2-E~,o~ , 

here AP = P4 - PC-C" 

For the discharging gas phase for the case of a complete lamination of the flow in the 
compressed cross section, the flow rate can be determined from the equation 

g ] /  /' 2 \• 
pg :( t , (9) 

where q(~) is a gas dynamic function depending on the ratio PC_C/Pg [for the critical dif- 
ference, q(~) = i]. 

Without taking account of the gas compressibility during the discharge, the equation 
for its flow rate assumes a simpler form 

ig 
Gout = ~F0~ V2-h-fipg, (10)  

h e r e  AP = P g - - P c - c -  As t h i s  t a k e s  p l a c e ,  a i s  d e t e r m i n e d  f rom [ 9 ] :  

~={O~" |//.Pg-~-l (11 )  
Gout ~ P4 ,. 

From ( 1 1 ) ,  i n  p a r t i c u l a r ,  i t  f o l l o w s  t h a t  f o r  C >> Ggou t << 1,  i . e . ,  t h e  f r a c t i o n  

o f  t h e  c r o s s  s e c t i o n  t h a t  i s  o c c u p i e d  by t h e  d i s c h a r g e  gas phase i n  t h i s  case i s  c o n s i d e r -  
a b l y  less than the area occupied by the liquid. Then the variation in ~ affects weakly the 
liquid flow rate, while the gas flow rate depends substantially on the variation in the flow 
area occupied by the gaseous phase. Therefore, when determining the variation in the phase 
discharge through the local hydraulic resistance the liquid can be conventionally considered 
as "a nonleaking valve" that closes the output cross section for the discharging gaseous 
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phase, without an inverse effect of the variation in the area occupied by the gas phase in 
the compressed cross section, on the liquid flow rate [10]. In this case 

(12)  

,, = ~Fo --]//~-t~~ K = ~Po 1/pZV~ , --~1/ N . . . .  . 

Ps 

The relationship among the parameters of the liquid flow at the input of the region 
with a bounded gas cavity is of the form 

6P~ - -  .,SPg = ~c PZ r'h~ ( 13 ) 

where 6v2 = 6G2s163 is the variation in the liquid rate immediately ahead of the cavitating body 
in the cross section 2-2. 

The system of equations (i), (2), (5)-(7), (12), and (13), completed by the equations 
of dynamics of the liquid in the pipeline and expressions for the variation in discharge of 
the gas, which is supplied into the cavity, is closed. In order to analyze the dynamics of 
the gas cavity inherently bounded in the pipeline, it is necessary to introduce certain as- 
sumptions that make the diagram of the process under consideration more specific. Thus, if 
we assume that the supply of gas in the cavity is provided by the blowing-in through the 
pipeline with a critical washer, mounted on it, i.e., ~G g = 0, and pressures ahead of the 

in 
cavitator and at the exit beyond the diaphragm are constant, then from the above-mentioned 
system of equations we can obtain an equation that relates the variation in volume of a 
bounded gas cavity to the pressure of the gas contained in it: 

Ao d-3~V~ d28Vg dSVg _ B?JPg(t - -  T,), ( 1 4 )  
o dt a + A s  dt ~ + A 1  dt - 

where 

ps Vgo, 
Aa = 9e  ag  ; A= = ?~% 4- Ka~ ' 

Vg o . 
A1 = P~o; B -- K a g  %V2o 

If, in order to obtain the results of the first approximation, as was done in [5], we 
assume that the gas mass in the cavity remains constant, i.e., 6Mg = 0 then from the system of 
equations we can readily derive an equation describing the variation in volume of the cavity 
in the form 

dZSVg dSVg 
a2 - ~  + al - - ~ - - / -  a06Vg + eoSV (t - -  ~) = O, ( 15 ) 

where 
PZFeo. 

a= = lit:; a 1 = - - ,  K 
2 

pgoa~ F p Pgoa g 
a 0 = , e 0  - -  

/co K~7-holco 

A characteristic feature of the solution obtained is the presence in it of the term 
with a deviating argument. This allows us to assume that there are nonsteady regimes in the 
cavity flow under consideration. 

The characteristic equation corresponding to (15) is of the form [ii] 

r z + er + ko + t l  exp ( - -  rx) = 0, (16)  

where  ~ = al/a~; s = ao/a~; Xl = eo/a~. 

E q u a t i o n  (16)  a l l o w s  u s ,  w i t h  t h e  h e l p  o f  t h e  method  o f  D - d i v i s i o n ,  t o  d e t e r m i n e  t h e  
b o u n d a r i e s  o f  t h e  r e g i o n s  o f  s t a b i l i t y  in  t h e  p l a n e  o f  any  two p a r a m e t e r s .  I f  we l e t  r = 
j ~  in  ( 1 6 ) ,  we o b t a i n ,  f o r  e x a m p l e ,  p a r a m e t r i c  e q u a t i o n s  f o r  t h e  domain  b o u n d a r i e s  o f  t h e  
D - d i v i s i o n  o v e r  t h e  p l a n e  ( x ,  ~ 1 ) .  I n  t h i s  c a s e ,  i f  we s e t  e q u a l  t o  z e r o  t h e  (Re S) and 
i m a g i n a r y  ( Im  S) p a r t s  o f  t h e  c h a r a c t e r i s t i c  e q u a t i o n  ( 1 6 ) ,  we o b t a i n  
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_(02 + )~o + ~, cos ((0.) = O, 

or, alternately, 

8(0 - -  )~1 s i n  ( (0~)  = O, 

I 8(0 /2~ 
"~ = arc tg  4- , 

co (02 __ ~'o co 

X~ = (co2 - -  Xo)/cos  (~o~), 

n = O ,  4- 1 , _ + 2  . . . .  

The location of the domains of stability and instability over the plane (x, ~i) with 
respect to boundaries of the D-division is related to the sign of the determinant 

OReS OReS 
& 0~,1 

A = ~10,). 

(17)  

(18) 

OIm S O I m S  
& 0~1 

If A > 0, while w varies from -~ to 4~, then the D-division boundary is hatched from 
the left; for & < 0, in the reverse direction. 

A typical pattern for the boundaries of domains of the D-division, corresPonding to 
calculation for X0 = 104 sec-2 in the range of physically realized values of parameters is 
represented in Fig. 4. When x and ~i increase, domains of the D-division become multiply 
connected; in Fig. 4 they are denoted by D2, D3,..., which attests that the system can lose 
the stability at several frequencies simultaneously [ii]. 

In order to obtain a more illustrative representation of the vibrations of a bounded 
gaseous cavity in a pipe for the case when it is unstable, we expand the term ~Vg(t - T), 
assuming that x is a small parameter, in a power series 

aVg (t - -  ~) = aVg(t) dSVg �9 d2aVg T 2 
dt 1! + dt 2 2! "'" ( 1 9 )  

I f  we r e t a i n  o n l y  t h e  t w o  f i r s t  t e r m s  i n  ( 1 9 ) ,  t h e n  f r o m  ( 1 5 )  we c a n  o b t a i n  

d28Vgdt 2 -t- 2b dSVSdt -~ (0~SVg = O, ( 2 0 )  

where 2b = 8 - -  ~IT; (0~ = ~o ~ %1. 

Therefore, since b < 0 in the region of instability the emergence of an instability is 
possible; such an instability exhibits itself in the form of periodic fluctuations of the 
gas cavity that increase exponentially. As is seen from (20), an instability is possible 
when E < ~IT, i.e., in fact, it is determined by the length of the path on which the bounded 

AI 
1 Jz 2 

/)1 

5.1o 3 21 

o o,1 

F i g .  4. Boundar ies  o f  the  domains o f  D - d i v i s i o n  
in the plane of parameters Xl, sec-2; x, s (dot- 
dash curves, calculation for e = 0; continuous 
curves, calculation for e = i0 sec-Z). 
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gas cavity exists, and the phase velocity of motion of the perturbation wave. Physically, 
the emergence of the instability is related to the delay time of the pressure variation in 
the gas cavity with respect to the variation in the flow rate of the liquid that is deliv- 
ered to the cavitating body's entrance and determines this variation by closing the flow 
cross section for the discharging gas phase. 

/ 

Conclusions. A mathematical model has been developed that reflects the characteristic 
features of the dynamics of a bounded gas cavity in a pipeline, which are obtained from vis- 
ual and photographic investigations, and discloses the physical nature of the emergence of 
self-exciting vibrational processes in the system. The regions of instability in the plane 
of operating conditions of the flow are found. 

NOTATION 

M, V. P, p, v, and G, mass, volume, pressure, density, velocity, and mass flow rate of 
the phases, respectively; j = vli~; k, wave number; aS, sound velocity in the gas; Vph, phase 
velocity of the perturbation wave; vo, Vgr, phase vezocities of purely capillary ann gravi- 
tational waves at the phase interface; x, longitudinal coordinate; t, time; ~, delay time; 
~c, coefficient of connected mass of a cavity; D, coefficient of contraction of a discharg- 
ing jet; $c; resistance coefficient of a cavitating body; F0, area of the flow cross sec- 
tion of a diaphragm; Fp, area of the middle section of a pipe; X, adiabatic index. Indices: 
g, gas phase; E, liquid; 2, 3, 3', and 4 refer to the corresponding cross sections 2-2, 
3-3,... of the flow; C corresponds to the parameters in the contracted cross section C-C of 
the discharging jet; 0 corresponds to the peak, mean, and fixed parameters; a, carrying 
away or removal of a phase; ~, symbol of variation of the corresponding parameter. 
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